Silver / Polystyrene Coated Hollow Glass Waveguides for the Transmission of Visible and Infrared Radiation

Carlos M. Bledt a and James A. Harrington a

a Dept. of Material Science & Engineering
Rutgers, the State University of New Jersey

January 21, 2012
Background on Hollow Glass Waveguides

- Used in the low loss broadband transmission from $\lambda = 1 - 16 \, \mu m$
- Light propagation due to enhanced inner wall surface reflection

Structure of HGWs
- SiO_2 capillary tubing substrate
- Ag film ~ 200 nm thick
- Dielectric(s) such as AgI, CdS, PbS
- Multilayer structures of interest

Theoretical loss dependence *
- $\propto 1/a^3$ (a is bore radius)
- $\propto 1/R$ (R is bending radius)

* Harrington, J. A., Infrared Fiber Optics and Their Applications
• Practical losses in HGWs:
 – Propagating modes
 – Dielectric thin film materials
 – Thickness of deposited films
 – Quality and roughness of films
 – Number of films deposited
 – \(\uparrow \text{Throughout} \propto \downarrow \text{mode quality} \)

• Wave Optics Attenuation Equation

\[
\alpha = \left(\frac{u_{nm}}{2\pi} \right)^2 \frac{\lambda^2}{a^3} \left(\frac{n_m}{n_m + k_m} \right) F_{\text{film}}
\]

- \(u_{nm} \) = mode parameter
- \(\lambda \) = wavelength
- \(a \) = HGW inner radius size
- \(n_m \) = metal refractive index
- \(k_m \) = metal absorption coefficient
- \(F_{\text{film}} \) = film loss reduction term

• \(F_{\text{film}} \) term dependence on:
 – Thin film structure
 – Propagating mode(s)

• \(\text{TE}_{01} \) mode is lowest loss mode in metal / dielectric coated HWs

• \(\text{HE}_{11} \) mode is lowest loss mode in metal / dielectric coated HWs
Single Layer Dielectric Thin Films

- Effect of dielectric layer on HGW
 - Constructive thin film interference
 - Reflection enhancement
 - Change in lowest loss mode
 - $\text{TE}_{01} \rightarrow \text{HE}_{11}$
 - Lower bending losses

Single Dielectric Film Loss Reduction

$$F_{\text{film}} = \begin{cases}
\left(1 + \frac{n_d^2}{\sqrt{n_d^2 - 1}} \right) \\
\frac{n_d^2}{\sqrt{n_d^2 - 1}} \left(1 + \frac{n_d^2}{\sqrt{n_d^2 - 1}} \right) \\
\frac{1}{2} \left(1 + \frac{n_d^2}{\sqrt{n_d^2 - 1}} \right)
\end{cases}$$

TE_{0m} TM_{0m} HE_{1m}

$n_d = \text{dielectric refractive index}$
Advantages of Ag & Ag / PS HGWs

• Advantages of Ag coated HGWs:
 – High laser damage threshold (CW & pulsed laser propagation)
 – No end reflection losses
 – Capable of broadband transmission (air core)
 – Reliability & durability in applications
 – Relatively low manufacturing costs

• Advantages of Ag / PS coated HGWs:
 – Close to optimal refractive index of $n = 1.414$
 • Very low-loss HGW dielectric film material
 – PS transparency from 500 nm to > 100 μm
 • Dielectric for VIS, IR, and THz λ
 – Chemically inert / high durability
 – Protective / optically functional coating
 – Inexpensive material / Non-hazardous
 – HE$_{11}$ mode propagation
• **Research objectives:**
 – Optimize Ag deposition procedure to ↓ α
 – Fabrication of low-loss HGWs at visible λ of longer lengths
 – Deposition of PS thin films in Ag coated HGWs for:
 • Low-loss transmission at visible λ (500 – 700 nm)
 • Low-loss transmission at NIR λ (800 – 1500 nm)
 • Low-loss transmission at THz λ (> 100 μm)

• **Experimental Approach**
 – Dimensionality constant at ID = 1000 μm
 – Optimize Ag deposition procedure by:
 • Varying fabrication parameters
 • Reducing manufacturing defects
 – Deposition of PS dielectric thin films
 • Control of deposition parameters
 • Increase reliability & consistency
 – Characterization to include:
 • FTIR spectroscopy
 • Optical attenuation measurements
Fabrication Methodology of Ag Films

- Films deposited via dynamic liquid phase deposition process (DLPD)
- Factors with major influence on Ag film quality
 - Solution concentrations (particularly Ag ion & reducer solutions)
 - Temperature of solutions (influences film growth rate)
 - Fluid flow rate (optimal flow velocity at ≈ 75 cm/s)
 - Atmospheric lighting (UV exposure results in low quality films)
- Optimization of Ag deposition procedure
 - Improve film quality → lower α at shorter λ
 - Applications at visible & NIR wavelengths
 - Fabrication of longer HGW samples (> 5 m)
- Key experimental parameters
 - Solution concentrations
 - Sensitizing procedure time
 - **Silver deposition time**
 - Fluid flow rate
• Films deposited via modified DLPD procedure

• The DLPD process for deposition of PS films:
 – PS deposition technique based on viscous drag rather than chemical reactions
 • Considerably harder to deposit uniform films along long HGW lengths
 – Vacuum pull technique used to pull polystyrene in organic solvent solution

• PS film quality and thickness control
 – Variation of pump pulling rate
 – Variation of PS solution concentration
 – Variation of organic solvent used
• Effect of sensitization procedure:
 – Reduction of Ag deposition time from 20 – 30 min \rightarrow 2 – 3 min ($\sim 10\times$)
 – Optimal sensitization parameters:
 • $[\text{SnCl}_2] = 1.55 \text{ mM @ pH } \approx 4.3$
 • Sensitization time of 5 min followed by 7.5 min drying time

• Effect of deposition fluid flow rate:
 – High correlation between fluid flow rate (VFR) & film quality
 – Occasional ‘striping’ defects
 – Non-uniform film quality
 – Localized defects due to flow
 – Length varying coating rate
 – Generally for VFR < 20 mL/min
 – Few or none ‘striping’ defects
 – Uniform film quality
 – Reduction of defect occurrence
 – Uniform coating rate
 – Generally for VFR > 40 mL/min
• **Effect of Ag deposition time:**
 – Minimize Ag deposition time while attaining adequate Ag film thickness
 – **Optimal Ag deposition parameters:**
 - $[\text{Ag}^{2+}] = 7.18 \text{ mM} \at \text{pH} \approx 9.5$
 - $[\text{C}_6\text{H}_{12}] = 1.55 \text{ mM}$
 - Optimal Ag deposition time of 180 – 195 sec at VFR $\approx 45 \text{ mL/min}$

• **Attenuation measurements at VIS & NIR wavelengths**
 – Loss measurements taken at $\lambda = 535 \text{ nm}, 612 \text{ nm}, \text{ and } 1064 \text{ nm}$
 – Able to fabricate samples at $L > 5.0 \text{ m}$ with measured $\alpha \approx 0.25 \text{ dB/m} @ \lambda = 535 \text{ nm}$

* Laser graphics courtesy of Brian T. Laustsen*
- Polystyrene is transparent at VIS & NIR wavelengths

- VIS spectral analysis
 - Uniform PS films at 0.5 & 1 wt % PS
 - PS adequate dielectric for $\lambda = > 500 \text{ Nm}$
 - Film thicknesses: 0.1 – 0.2 μm
 - Attenuation measurements to follow
 - Thinner PS films necessary

- NIR spectral analysis
 - Uniform PS films at 3 & 4 wt % PS
 - PS adequate dielectric for $\lambda = 1 – 3 \mu \text{m}$
 - Film thicknesses: 0.2 – 0.6 μm
 - Attenuation measurements to follow
 - Possibility for simultaneous λT
• Polystyrene thin films can be extended for THz \(\lambda \) transmission

• PS thin films of adequate thicknesses for THz transmission deposited
 – Film thicknesses from > 1 \(\mu m \)

\[
d = \frac{(k_m - k_{m-1})^{-1}}{4 \cdot \sqrt{n_F^2 - 1}}
\]

- \(m \) = interference peak order
- \(k_m \) = interference peak wavenumber
- \(n_F \) = dielectric refractive index

• PS deposition procedure for THz
 – High [PS] solutions (22 – 28 weight %)
 – Thicknesses found through extrapolation
 – Losses ~ 1.5 dB/m at 2.9 THz
• Substantial improvement of Ag coated HGWs
 – Improvement of Ag film quality through fabrication optimization
 – Considerable decrease in loss at VIS & NIR wavelengths
 – Fabrication of low-loss HGWs > 5 m in length
 – Necessary reproducibility achieved
 – High power (> 1 MW) laser delivery attained
 • Pulsed laser at $\lambda = 535$ nm

• PS coatings in HGWs:
 – Successful deposition of PS thin films via DLPD
 – Further film quality control necessary
 – Continue development of coating techniques
 – Promising measured losses at THz frequencies

• Future research:
 – Continue improvement of PS thin film deposition procedure
 • Acquire consistent solution concentration / film thickness dependency
 – Comparison of Ag/PS HGWs vs. Ag HGWs at VIS & NIR λ
 – Fabrication of Ag/PS HGWs capable of low-loss THz λ delivery
Thank you for your attention!