

Silver / Polystyrene Coated Hollow Glass Waveguides for the Transmission of Visible and Infrared Radiation

Carlos M. Bledt a and James A. Harrington a

^a Dept. of Material Science & Engineering Rutgers, the State University of New Jersey

- Used in the low loss broadband transmission from $\lambda = 1 16 \mu m$
- Light propagation due to enhanced inner wall surface reflection

- Theoretical loss dependence *
 - $\propto 1/a^3$ (a is bore radius)
 - ∝ 1/R (R is bending radius)

Structure of HGWs

- SiO₂ capillary tubing substrate
- Ag film ~200 nm thick
- Dielectric(s) such as AgI, CdS, PbS
- Multilayer structures of interest

Practical losses in HGWs:

- Propagating modes
- Dielectric thin film materials
- Thickness of deposited films
- Quality and roughness of films
- Number of films deposited

Wave Optics Attenuation Equation

$$\alpha = \left(\frac{u_{nm}}{2\pi}\right)^2 \frac{\lambda^2}{a^3} \left(\frac{n_m}{n_m + k_m}\right) F_{film}$$

 u_{nm} = mode parameter

 λ = wavelength

a = HGW inner radius size

 n_m = metal refractive index

k_m = metal absorption coefficient

 F_{film} = film loss reduction term

- F_{film} term dependence on:
 - Thin film structure
 - Propagating mode(s)
- TE₀₁ mode is lowest loss mode in metal / dielectric coated HWs
- HE₁₁ mode is lowest loss mode in metal / dielectric coated HWs

Effect of dielectric layer on HGW

- Constructive thin film interference
- Reflection enhancement
- Change in lowest loss mode
 - $TE_{01} \rightarrow HE_{11}$
- Lower bending losses

Single Dielectric Film Loss Reduction

$$F_{film} = \begin{cases} \left(1 + \frac{n_d^2}{\sqrt{n_d^2 - 1}}\right) & TE_{0m} \\ \frac{n_d^2}{\sqrt{n_d^2 - 1}} \left(1 + \frac{n_d^2}{\sqrt{n_d^2 - 1}}\right) & TM_{0m} \\ \frac{1}{2} \left(1 + \frac{n_d^2}{\sqrt{n_d^2 - 1}}\right) & HE_{1m} \end{cases}$$

n_d = dielectric refractive index

- Advantages of Ag coated HGWs:
 - High laser damage threshold (CW & pulsed laser propagation)
 - No end reflection losses
 - Capable of broadband transmission (air core)
 - Reliability & durability in applications
 - Relatively low manufacturing costs

Advantages of Ag / PS coated HGWs:

- Close to optimal refractive index of n = 1.414
 - Very low-loss HGW dielectric film material
- PS transparency from 500 nm to > 100 μm
 - Dielectric for VIS, IR, and THz λ
- Chemically inert / high durability
- Protective / optically functional coating
- Inexpensive material / Non-hazardous
- HE₁₁ mode propagation

Research objectives:

- Optimize Ag deposition procedure to ↓ α
- Fabrication of low-loss HGWs at visible λ of longer lengths
- Deposition of PS thin films in Ag coated HGWs for:
 - Low-loss transmission at visible λ (500 700 nm)
 - Low-loss transmission at NIR λ (800 1500 nm)
 - Low-loss transmission at THz λ (> 100 μm)

Experimental Approach

- Dimensionality constant at ID = 1000 μm
- Optimize Ag deposition procedure by:
 - Varying fabrication parameters
 - · Reducing manufacturing defects
- Deposition of PS dielectric thin films
 - Control of deposition parameters
 - Increase reliability & consistency
- Characterization to include:
 - FTIR spectroscopy
 - · Optical attenuation measurements

- Films deposited via dynamic liquid phase deposition process (DLPD)
- Factors with major influence on Ag film quality
 - Solution concentrations (particularly Ag ion & reducer solutions)
 - Temperature of solutions (influences film growth rate)
 - Fluid flow rate (optimal flow velocity at ≈ 75 cm/s)
 - Atmospheric lighting (UV exposure results in low quality films)

- Optimization of Ag deposition procedure
 - Improve film quality → lower α at shorter λ
 - Applications at visible & NIR wavelengths
 - Fabrication of longer HGW samples (> 5 m)
- Key experimental parameters
 - Solution concentrations
 - Sensitizing procedure time
 - Silver deposition time
 - Fluid flow rate

- Films deposited via modified DLPD procedure
- The DLPD process for deposition of PS films:
 - PS deposition technique based on viscous drag rather than chemical reactions
 - Considerably harder to deposit uniform films along long HGW lengths
 - Vacuum pull technique used to pull polystyrene in organic solvent solution

- PS film quality and thickness control
 - Variation of pump pulling rate
 - Variation of PS solution concentration
 - Variation of organic solvent used

- Effect of sensitization procedure:
 - Reduction of Ag deposition time from 20 − 30 min → 2 − 3 min (~ 10×)
 - Optimal sensitization parameters:
 - $[SnCl_2] = 1.55 \text{ mM} @ pH \approx 4.3$
 - Sensitization time of 5 min followed by 7.5 min drying time
- Effect of deposition fluid flow rate:
 - High correlation between fluid flow rate (VFR) & film quality

Low Fluid Flow Rates

- Occasional 'striping' defects
- Non-uniform film quality
- Localized defects due to flow
- Length varying coating rate
- Generally for VFR < 20 mL/min

High Fluid Flow Rates

- Few or none 'striping' defects
- Uniform film quality
- Reduction of defect occurrence
- Uniform coating rate
- Generally for VFR > 40 mL/min

- Effect of Ag deposition time:
 - Minimize Ag deposition time while attaining adequate Ag film thickness
 - Optimal Ag deposition parameters:
 - $[Ag^{2+}] = 7.18 \text{ mM} @ pH \approx 9.5$ $[C_6H_{12}] = 1.55 \text{ mM}$
 - Optimal Ag deposition time of 180 195 sec at VFR ≈ 45 mL/min
- Attenuation measurements at VIS & NIR wavelengths
 - Loss measurements taken at $\lambda = 535$ nm, 612 nm, and 1064 nm

– Able to fabricate samples at L > 5.0 m with measured $\alpha \sim 0.25$ dB/m @ $\lambda = 535$ nm

Polystyrene is transparent at VIS & NIR wavelengths

- VIS spectral analysis
 - Uniform PS films at 0.5 & 1 wt % PS
 - PS adequate dielectric for $\lambda = > 500 \text{ Nn}$
 - Film thicknesses: 0.1 0.2 μm
 - Attenuation measurements to follow
 - Thinner PS films necessary

- NIR spectral analysis
 - Uniform PS films at 3 & 4 wt % PS
 - PS adequate dielectric for $\lambda = 1 3 \mu m$
 - Film thicknesses: 0.2 0.6 μm
 - Attenuation measurements to follow
 - Possibility for simultaneous λ T

- Polystyrene thin films can be extended for THz λ transmission
- PS thin films of adequate thicknesses for THz transmission deposited
 - Film thicknesses from > 1 μm

- PS deposition procedure for THz
 - High [PS] solutions (22 28 weight %)
 - Thicknesses found through extrapolation
 - Losses ~ 1.5 dB/m at 2.9 THz

$$d = \frac{(k_m - k_{m-1})^{-1}}{4 \cdot \sqrt{n_F^2 - 1}}$$

m = interference peak order

k = interference peak wavenumber

 n_F = dielectric refractive index

RUTGERS

Substantial improvement of Ag coated HGWs

- Improvement of Ag film quality through fabrication optimization
- Considerable decrease in loss at VIS & NIR wavelengths
- Fabrication of low-loss HGWs > 5 m in length
- Necessary reproducibility achieved
- High power (> 1 MW) laser delivery attained
 - Pulsed laser at λ = 535 nm

PS coatings in HGWs:

- Successful deposition of PS thin films via DLPD
- Further film quality control necessary
- Continue development of coating techniques
- Promising measured losses at THz frequencies

Future research:

- Continue improvement of PS thin film deposition procedure
 - Acquire consistent solution concentration / film thickness dependency
- Comparison of Ag/PS HGWs vs. Ag HGWs at VIS & NIR λ
- Fabrication of Ag/PS HGWs capable of low-loss THz λ delivery

Thank you for your attention!

